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Chaos theory has a strong appeal for psychology because it allows for the investi­
gation of the dynamics and nonlinearity of psychological systems. Consequently,
chaos-theoretic concepts and methods have recently gained increasing attention
among psychologists and positive claims for chaos have been published in nearly
every field of psychology. Less attention, however, has been paid to the appropri­
ateness of chaos-theoretic algorithms for psychological time series. An appropriate
algorithm can deal with short, noisy data sets and yields 'objective' results. In
the present paper it is argued that most of the classical nonlinear techniques don't
satisfy these constraints and thus are not appropriate for psychological data. A
methodological approach is introduced that is based on nonlinear forecasting and
the method of surrogate data. In artificial data sets and empirical time series we
can show that this methodology reliably assesses nonlinearity and chaos in time
series even if they are short and contaminated by noise.

1 Introduction

Chaos theory has a strong appeal for psychology for several reasons. First, it
provides psychologists with a new vocabulary to conceptualise the complex and
often seemingly random behavior of psychological systems. Psychotic episodes,
for instance, can now be understood as manifestations of a chaotic system 1.

Second, the mathematical tools of chaos theory allow the formalisation and
simulation of psychological theories and hence render the latter more trans­
parent and stringent. Third, nonlinear time series analysis - to a large extent
developed by the dynamical systems community - makes it possible to em­
pirically investigate the nonlinearities observed in psychological phenomena.
It is therefore not surprising that chaos-theoretic concepts and methods have
recently received growing interest among psychologists 2. In particular, nonlin­
ear modeling techniques and algorithms have been widely used and claims of
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positive evidence for chaos in psychological data have been published in nearly
every field of psychology':3,4, 5 .

However, less attention has been paid to the question of the appropri­
ateness of these algorithms for psychological time series. One rather obvious
reason to raise this question is that most of the classical nonlinear techniques
have been developed in the physical sciences and hence make strong assump­
tions concerning the quality and length of the data 6. More specifically, they
often require thousands of data points with high resolution and a small amount
of noise. Psychological time series, however, are typically contaminated by a
high percentage of noise, are not very fine grained and rather short in length.
An other problem with these algorithms is that it is often not possible to de­
termine objectively the significance of the results which obviously renders the
interpretation of the latter difficult if not impossible. If we look more closely to
the most popular nonlinear method - dimension analysis 7 - even more problems
arise. Dimension algorithms seem, for example, to indicate a finite dimension,
even when presented with random noise 8. Another bias is known as the 'edge
effect' 9 due to finite data samples in high dimensions. This effect can make
even white noise appear to have a finite dimension. Moreover, dimension esti­
mates are sensitive to the amount of noise in the system'? and require a large
amount of data in order to yield reliable results 11. Hence, it can be concluded
that dimension analysis and other classical algorithms of dynamical systems
theory such as Wolf's algorithm for calculating the Lyapunov-Exponent 12 are
not appropriate for psychological data. Similar conclusions have been drawn
in fields such as economics 13 or biology 14,15 that have to deal with related
problems, namely the nonlinear analysis of small, noisy data sets.

Consequently, a lot of research has recently been devoted to the develop­
ment of alternative approaches to nonlinear time series analysis which avoid
the mentioned pitfalls of the traditional methods 16. In this paper, we try to
abstract from this very large literature those algorithms that we consider to
be most pertinent for the nonlinear analysis of psychological data in that they
can deal with short and noisy time series. Moreover, most of these algorithms
have been developed outside the physical sciences and have been shown to
yield reliable results when applied to short and noisy data. Even more impor­
tantly, our emphasis is on using several of these appropriate algorithms since
when only one method is used to analyse a time series, the results are ex­
pected to be at best incomplete, and at worst wrong and misleading 17. None
of these algorithms have - to OUI knowledge - been applied to psychological
data. Our overall goal is to develop a methodology for the nonlinear analysis
of psychological time series which is appropriate in the sense that it satisfies
the constraints imposed by psychological systems in general (e.g. very little is
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known about the dynamical system that generated the data) and psychological
data in particular (e.g. short and noisy time series). In essence, two important
new methodologies are introduced and applied to artificial and empirical time
series: nonlinear forecasting and the method of surrogate data. The nonlinear
forecasting of time series data has a relatively recent history 18,19. However,
it constitutes one of the most promising fields of research in nonlinear time
series analysis and has recently gained a lot of attention 16. The even more
recently proposed method of surrogate data 20,21 serves the purpose of seeing
whether certain classes of models for the data can be rejected. This involves
generating many surrogate data sets satisfying the null hypothesis, and com­
puting a statistic (such as the forecast error) for each. It has been shown that
this technique is very successful in distinguishing chaos from various random
processes even in short and noisy data sets 14. Moreover, since it is inherently
a statistical approach the surrogate data method allows the quantification of
the results in a more rigorous manner than was possible with the traditional
techniques.

The organisation of this paper is as follows. In Section 2 the nonlinear
forecasting methodology and the surrogate data method are introduced. More
specifically, a nonparametric simplex algorithm 15, a parametric forecasting
algorithm 17, and two surrogate data methods 20,21 are presented. In Section
3 these methods are applied to artificial test data and empirical psychological
time series. In Section 4 the results are discussed, the main problems are
pointed out and possible further improvements of the proposed methodology
are outlined.

2 Methods

2.1 Nonlinear forecasting

One essential property of chaos is its determinism, i.e. chaotic systems obey
certain rules. Trajectories of chaotic systems can be predicted for short time
scales. However, chaos amplifies noise exponentially and as a result this short­
term determinism becomes long-term randomness. The idea behind the fore­
casting algorithms presented in this section is to use this characteristic to
detect chaos in time series. In order to do this, a number of steps have to
be performed. The first task is to reconstruct the system phase space from
the time series, typically measurements of a single scalar observable at a fixed
spatial point. This is of course standard practice in nearly every nonlinear
algorithm and we therefore only present the main ideas 22. From the orginal
time series x(t) an embedding space or state space representation of dimension
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E is constructed whose points are

X(t) = (x(t), x(t - T), ..., x(t - (E - l)T) (1)

X(t) is called a delay vector with embedding dimension E and delay time T.

Takens 23 proved that if E > 2d, where d denotes the number of degrees of
freedom of the dynamical system, then there is a smooth map fT : ~E -T ~

such that
X(t +T) = t" (X(t)) (2)

where the current state is X(t) and X(t +T) is a future state. The problem in
nonlinear forecasting is to estimate X (t +T). Since chaotic dynamics does not
occur unless f is nonlinear, one has to build nonlinear models to approximate
chaotic dynamics. Thus, the task is to find a good representation or approxi­
mation for the unknown function f. To avoid additional complexity, we now
assume that our time series is embedded in an appropriate state space, and
we have determined the embedding parameters E and T. The problem now
is to reconstruct the deterministic rule underlying the data. In the following,
we discuss two nonlinear methods of local forecasting: first order and second
order approximation.

The simplest (and earliest) forecasting procedure was suggested by Lorenz
24. Suppose we want to predict the value of X (k+1) knowing a long time series
XU) for j < k. In first-order approximation 19 - sometimes also called 'method
of analogs' - one finds the nearest neighbour to the current value of X(k), say,
X(v) , and then assumes that X(v +1) is the predicted value for X(k + 1).
Obviously, this is not really a representation or much of a model and the quality
of this prediction can be improved in several ways. One possibility is to take
a collection of near neighbours of the point X(k) and take the averaged value
of their images as the prediction.

Sugihara and May 15 have introduced a nonparametric simplex method
(hereafter abbreviated as SM) that does exactly this. First, the time series is
splitted in two parts. The first part is used as a library to predict the points
on the second part. Hence, short-term predictions are made that are based on
a library of past patterns in a time series as in the example above. Specifically,
for each -dimensional point for which one wishes to make a prediction - for each
'predictee' -, all nearby points in the state space are selected. Of these points
the simplex with the minimum diameter formed from E +1 nearest neighbours
is constructed. To estimate the prediction, the evolution of the simplex after
T time steps is calculated, weighting the actual distances by original distances
from the respective, relevant neighbours. Finally, the correlation between the
predicted and the raw data is computed. A decrease in this correlation with
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increasing prediction time steps suggests chaos whereas a non-decreasing pre­
diction accuracy points to a random or some linear process (see Section 3).

The SM has been applied to biological 25, 15 , economical i" and psychopatho­
logical 27 time series. In Section 3 it will be shown that the SM is a useful
method to distinguish various random and linear processes from chaotic time
series even in short and noisy data sets. Let us now turn to a further improve­
ment of the first-order approximation scheme. The main idea is to fit an affine
model to approximate the unknown function f of equation (2). This is called
second-order approximation. The implementation of the 'method of analogs'
in second-order approximation can be done in different ways. Polynomials
are a good representation because their parameters can be linearly fit to min­
imise least square deviations (see below). Radial basis functions 17 or neural
networks 26 provide other alternatives. One very interesting parametric fore­
casting method was recently proposed by Casdagli 17. In this approach, non­
linear models are constructed with a variable smoothing parameter which at
one extreme defines a nonlinear deterministic model, and at the other extreme
defines a linear stochastic model. Specifically, piecewise-linear approximations
to the function f of equation (2) are constructed by using a variable number
of k neighbours. In essence, a small value of k corresponds to a deterministic
approach to modelling as used in the 8M (see above) whereas the largest value
of k is equivalent to fitting linear stochastic autoregressive models. Finally,
intermediate values of k correspond to fitting nonlinear stochastic models as,
for example, proposed by Tong 28. Since with this approach one compares
deterministic with stochastic models, Casdagli calls his method deterministic
versus stochastic modelling (DVS).

The DVS algorithm is implemented as follows 17. First, as in the SM,
the time series is divided in two parts: a fitting set containing the first Nf
data points of the time series, and a testing set containing Nt = N - N f
data points, where N is the length of the time series.Again, one chooses an
embedding dimension E, a delay time 7, a forecasting step T and a predictee
X(i) with i > Nt for a T-step-ahead forecasting test. Next, the distances of
the predictee from the delay vectors X(j),l + (E - 1)7 < j < Nt - T, in the
fitting set are computed and the k, 2(E +1) < k < Nt - T - (E - 1)7, nearest
neighbours of the predictee are found to fit an affine model of the following
form:

E

Xj(l)+T ::::::; ao + 2:= a n Xj (l ) - (n - 1)n l = 1, ... , k
n=l

(3)

where the parameters ao, ... , aE are computed by ordinary least squares.
Finally, the fitted model (3) is used to estimate a T-step-ahead forecast for
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the predictee. This procedure is repeated for all data points in the test set. The
prediction accuracy can then be computed by using correlation between the
predicted and the actual values of the time series. 1£ the correlation increases
with the number of E-dimensional nearest neighbours, the model is a linear
stochastic process. In contrast if a small number of nearest neighbours shows
high predictive power, this points to a nonlinear deterministic process. The
DVS algorithm has been successfully applied to short and noisy biological time
series 17,29. In Section 3 the DVS it will be applied to artificial test data and
psychological time series.

2.2 Surrogate data

Although the SM and the DVS are superior to traditional approaches in that
they can detect chaos in short and noisy data sets they have one major draw­
back: their results cannot be obtained statistically, i.e. it is still necessary to
rely on 'face validity' to be able to conclude if a time series is chaotic or not.
In order to overcome this problem, several approaches have been developed,
the most promising one being the method of surrogate data (MSD), proposed
by Theiler et al. 21. A related algorithm called 'noise versus chaos' (hereafter
abbreviated as NVC) was introduced by Kennel and Isabelle 20, the major dif­
ference being in the NVC's use of predictor errors from many points in phase
space instead of the average prediction error as a distinguishing statistic (see
below).

Both algorithms have been successfully applied to short, noisy data from
biology 29,21, economics 26 and psychopathology 27. In the rest of this section,
the two methods will be presented. The procedure consists of three parts:
First, some linear process is specified as a null hypothesis. Second, suitable
random data - the surrogate data - are generated, normalised to the mean
and the variance of the original data. Third, a discriminating statistic for
the original and for each of the surrogate data sets is computed. The basic
idea is that, if the value computed for the original time series is significantly
different than the ensemble of values computed for the surrogate data, then
the null hypothesis is rejected and nonlinearity is detected. In the following,
these three issues will be addressed in more detail. .

The null hypothesis typically specifies that certain characteristics of the
original time series are preserved (e.g. mean and variance) but that there is
no further structure in the data. The surrogate data set is then generated
to mimic these preserved trivial properties of the raw data but otherwise be
random. In this paper, the following null hypotheses were used:

1. temporally uncorrelated noise(H~TUN)). The simplest null hypothesis
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one can devise about a time series is that there is no evidence for any
dynamics at all; that is, that the data are fully described by indepen­
dent and identically distributed (IID)random variables. To generate the
surrogate data, two algorithms can be used. First, if the distribution is
assumed to be gaussian, then the surrogate data can be generated from
a standard pseudorandom generator. Second, to test the hypothesis of
uncorrelated noise with arbitrary amplitude distribution, surrogate data
can be generated by shuffling the time-order of the raw data. We will
refer to these procedures as Sur(rand) and Sur(shuffle), respectively.

2. linearly autocorrelated gaussian noise(HaLAGN»).The null hypothesis in
this case is that all the structure in the time series is given by the Fourier
power spectrum or, equivalently, by the autocorrelation function (ACF).
The simplest case is that given by the Ornstein-Uhlenbeck process, which
can be produced by

x(t) = <Po +<P1X(t - 1)+ fh(t) (4)

were €(t) is uncorrelated gaussian noise of unit variance. The coefficients
<Po, <P1 and 8 determine mean, variance, and autocorrelation time of the
time series, respectively. The more general case can be implemented by
fitting an AR(K)MA(L)-model of the form

K L

x(t) = L cPkX(t - k) +L 8z€(t - l)
k=l Z=l

(5)

(6)

where the coefficients {cPk} and {8z} are to be determined by fits to the
data, typically using a least squares or an information theoretic criterion,
and the €(t) are some stochastic forcing terms which are specified by the
modeler. Surrogate data can then be generated by iterating (4) or (5),
where the coefficients have been fit to the original data. We will refer to
these procedures as Sur(Uhl) and Sur(ARMA), respectively.

An alternative algorithm, based on the phase randomisation of the fast fourier
transform, is described in Theiler et. al. 21. In this case, the surrogate data
are generated in two steps:

1. taking the discrete fourier transform

N-1
B(k) = L x(t)e27rink/N

t=O

and
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2. generating surrogate data sets s = 1, ... , S

gS(k) = 3(k)[((k) + i7](k)] (7)

(8)

where ( and 7] are independent, real Gaussian random numbers with mean 0
and variance 1/2 and 7](k) = -7](N - k) ensuring xS(k) to be real. We will
refer to this algorithm as Sur(Fourier). There are, of course, many other
null hypotheses that can be tested for. For instance, one could test for noisy
periodicity as proposed by Kennel and Isabele 20 or the null hypothesis of a
static nonlinear filter of linearly correlated noise as used by Theiler et al. 21.

In the following, however, we restrict ourselves to the two null hypotheses
described above.

Discriminating statistic and technique of comparison. Although, in prin­
ciple, any discriminating statistic can be used we chose to use a phase-space
predictor to obtain the results presented in Section 3. More specifically, the
correlation between predicted and raw data was used. Using a predictor has the
advantage that it directly investigates one of the essential differences between
chaos and randomness, namely determinism. Moreover, it is algorithmic simple
and free of any parameters. Theiler et al. also consider correlation dimension
as a statistic, but - as mentioned in the introductory section - dimension anal­
ysis has several drawbacks in respect to the analysis of short and noisy data.
Similarly, as pointed out by Daemmig 30, numerical estimation of even the
largest Lyapunov exponent can be problematic in the presence of noise.

Once one has computed the value of the discriminating statistic for the
original and the surrogate data, the significance of the difference in the MSD
is defined as follows. In our case the statistic of interest is the correlation
coefficient p. In this case the resulting mean correlation PH is compared to
Praw and the result is normalised by the standard deviation of the surrogates.
Thus the significance with which one can reject the null hypothesis is

S = PH - Praw

CJ'H

A significant rejection of the null hypothesis occurs when S > 2 21. In the
NVC, the set of prediction errors - which are decimated by the factor of the
prediet~o~ error autocorrelation - on the real data set (A), and the ensemble
of prediction errors on surrogate data sets (B) are compared using the Mann­
Whitney rank-sum statistic

card(a) card(B)

U = L L 8(Ai - Bj)
i=l j=l

(9)
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Type of process 8M DVS MSD NVC

(0.) (Pill) (PI) \f'( H;UN) \f'(HOI-lGN) (z)
non-linear
deterministic »0 » >2 >2 <-3.72

linear stochastic
e.g.

AR(M) :::::0 « >2 <2 >-3.72

MA(L) »0 « >2 <2 >-3.72

white noise :::::0 :::::0 <2 » -3.72

Figure 1: A framework for the nonlinear analysis of psychological time series. (0): mean
forecasting accuracy one day ahead minus mean forecasting five days ahead; (PnZ), (PI): mean
forecasting accuracy in the nonlinear deterministic end (nl) and the linear stochastic end
(l)j 'I! (H(fUN) , 'I!(Hl'AGN): mean MSD significance S for the two null-hypotheses outlined
in the text. (z): mean z-value. All means are computed using E =1. ..10j for SM, DVS, and

MSD T =I, for NVC T =1...10

(10)

where 0 (.) is the Heaviside step function: 0 (a:;) = 1 for a:; > 0 and 0 (a:;) = 0
for a:; < 0 . For large sets a standard normal distributed Z-statistic is obtained

U - card(A)card(B)/2
z=-,====================vi 112card(A )card(B )(card(A ) + card(B) + 1)

(11)J
z 1

--==--- = a / K
-00 ~e-z2dz

are more trenchant and in our case with K = 10 at -3.72 for a one-variable
confidence limita = O.Ol.We have now reached a point where we can integrate
these algorithms into a coherent framework, depicted in Figure 1. In essence,
it allows us to distinguish empirically between nonlinear (possibly chaotic) de­
terministic systems, linear systems such as an ARMA-process and white noise.

differentiating whether the distribution of the prediction errors of A or Bare
significantly smaller or larger. With K repetitions for different time delays T

the limits on z
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Obviously, this is a rather general differentiation'. However., it is easily possible
to add new features in this scheme. One can, for instance, integrate more elab­
orated hypotheses such as a static nonlinear filter of linearly correlated noise
into the MSD or the NVC. An other alternative would be to use a nonlinear
stochastic predictor 28 as a discriminating statistic. In any case we believe that
the reliable distinction between the three classes of processes listed in Figure
1 constitutes an important step towards our overall goal, namely the develop­
ment of a coherent and appropriate methodology for the nonlinear analysis of
psychological systems. In Section 4 we will show how this framework can be
combined with other time series analysis tools. First, however, let us turn to
its application to artificial and empirical time series.

3 Results

3.1 Artificial time series

To test the algorithms, two experiments were conducted. The first experi­
ment served to answer the question whether they can differentiate between
white noise, linear and nonlinear (in our case chaotic) processes consisting of
very few data points. In the second experiment robustness with respect to
noise level was tested. Remember that we analyse the following methods: the
simplex method (SM), the 'deterministic versus stochastic'-algorithm (DVS),
the method of surrogate data (MSD), and the 'noise versus chaos'-technique
(NVC).

Eeperimetii 1: Differentiation. Three categories of processes were gener­
ated: (1) random processes, (2) linear processes, and (3) chaotic processes.
The main interest was to check whether each of the algorithms was able to
differentiate between them. Note that with this length of the data none of
the classical algorithms could be used. Figure 2a shows the results obtained
by applying the simplex algorithm (SM) to these data. It can been seen that,
indeed, the forecasting accuracy - quantified by using the correlation coeffi­
cient p - decreases with increasing forecasting time step T only for the chaotic
time series. This signature of p decreasing with T does not arise when the
erratic time series is in fact a noisy limit cycle or a first order autoregressive
process. Not unexpectedly, no significant forecasting accuracy can be obtained
for the IID process. Hence, the SM can discriminate chaotic from linear and
random processes. Similar conclusions can be drawn for the DVS algorithm
(Fig. 2b). It correctly classifies the chaotic time series in the deterministic end
(high correlation with small k values) and the other processes in the stochastic
end (high correlation with high k values). However, these conclusions rely on



37

SM DVS

0 0
0 2 4 6 8 10 0 18 36 54 72 90 108 126 144 162180

prediction step T number of neighbors k
a) b)

MSD (noise) MSD (linear)
20 20

18 t8

16 16

14 14

12 12

u:> 10 u:> 10

8 8

6 6

4 4

2 2

0 0
0 2 4 6 8 10 0 2 4 6 8 10

embedding dimension embedding dimension

c) d)

Co
c.s
~O.5

~

Figure 2: Differentiating chaotic, linear and random processes with the algorithms presented
in the text. a) SM, b) DVS, c) and d) MSD. The following processes were used: crosses:
Henon-Map in the chaotic regime (~(t + 1) == y(t) + 1 - 1.4~2(t)jy(t) == 0.3a:(t))jsquares:
Logistic-map in the chaotic regime (~(t+1) == 4~(t)(1- ~(t))); diamonds: Sine wave with
50% noise (~(t) = sin(0.5t) + E(t),€ E [-0.5,0.5]); plusses: first order autoregressive process
(AR(l), ~(t + 1) = O.4~(t) + e(t), e E [-1,1]); dashed: random process generated with a

standard pseudorandom number generator. For a.11 calculations E == 3,7' == 1
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Type of process SM DVS MSD NVC

(n) (Pnl) (PI)
,¥(H;N) 'P{Hour.v) (z)

Henon 0.87 0.21 0.99 17.23 15.89 -16.47

Logistic map 0.85 0.17 0.99 14.77 14.12 -13.38

AR(ll 0.08 0.78 0.34 15.61 1.21 -0.01
Sinus 0.Q2 0.81 0.45 12.34 0.98 0.21

Random 0.04 0.12 0.09 0.89 _.. 2.34

Figure 3: Differentiating chaotic, linear and randomprocesses with the algorithms presented
in the text.

the inspection of the plots in Figs. 2a and 2b and hence on 'face validity'.
In order to get quantitative results, the MSD and the NVC algorithm were

applied to the test data. The results for the MSD are depicted in Figs. 2c and
2d. First, the null hypothesis of temporally uncorrelated noise was tested
and surrogate data were generated with the shuffling algorithm Sur(shu[fle)
described in section 2 (Fig. 2c). The null hypothesis can be rejected for all
time series except the IID process. Second, surrogate data were generated
using algorithm Sur(Fourier), hence testing for the null hypothesis of linearly
auto correlated gaussian noise (Fig. 2d). In this case, the null hypotheses can
be rejected only for the chaotic time series. Thus, the MSD correctly identifies
the linear processes and discriminates them from the nonlinear (chaotic) ones.
In Figure 3 these results are integrated into the framework presented in the
last section. It is easy to verify that we can correctly and reliably distinguish
the time series in question. This is an important result since we use very short
data sets.

Ezperiment 2: Discretization In the second experiment, it was tested
whether nonlinear determinism can be detected even when the continuous dy­
namical system which generated the time series is discretized. Discretization
of continuous dynamics occurs frequently in psychology where rating-scales are
often the only means to obtain relevant data. It is thus important to know if
the algorithms presented here are appropriate for discretized dynamical sys­
tems. In a first step, the Henan-Map time series used in the first experiment
was mapped onto the intervals [1. ..1],1 E [5...9]. Next, the algorithms were
applied to these discretized time series. In figure 4 the results of this experi-



39

64

MSD Henan-map

o'-- -l.- --L. --I

2

16r-----...,.------,-------,

10

oL-_---l-__-'-__.L..-_---'-__....J

o

Henon-map

0.2

us

prediction stepT embedding dimension

Figure 4: nonlinear forecasting (left) and surrogate statistic (right) for orignial and dis­
cretized Henon-Map data. Dash-dotted: origninal data; crosses: 5-point scale; boxes: 7-point
scale; diamonds: 8-point scale; dashed: 9-point scale. E =3,N = 400,7" = 1. Explanations

see text.

ment are shown for the 8M and the MSD. Two conclusions can be drawn from
this experiment: First, the results obtained for the discretized data are very
similar to the ones obtained for the continuous data (p ~ 0.97). Second, less
significant results are obtained for the discretized time series. This is an impor­
tant outcome since we get more conservative results for the discretized data.
Hence, results obtained by applying these algorithms to rating-scales data (like
the ones presented below) are expected to yield reliable results which tend to
be less significant compared to results from the underlying continuous system.

9.2 Empirical time series

We present results on clinical data. These results are meant to be illustrative.
Our goal is to show that the framework developed in the last sections can
indeed yield reliable and meaningful results when applied to psychological time
series. We studied 14 patients treated at the 'Soteria Bern'. The Soteria as
a small residential clinic specialised for persons experiencing first psychotic
manifestations is based on ideas of milieu therapy and affect logic 1,31. The
prerequisite for inclusion in our sample was that the daily manifestations of
psychotic symptomatology of a patient could be observed almost completely
for a long enough period of time (at least 200 days). The longitudinal course
was mapped by the daily rating of a patient's psychoticity by Soteria staff
members. A seven-point scale was used as described in Aebi et. al. 31. At
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Model SM DVS MSD NVC
Patient
(sex)

(n) (Pnl) (PI) IJI(H;'N) IJI(H:GN ) (z)

2(m) nonlin 0.578 0.53 0.87 9.26 6.66** -8.32 **

1(m) nonlin 0.757 0.32 0.64 4.59 3.42** -5.12 **

5(f) nonlin 0.358 0.43 0.71 3.91 11.34** -7.12 **

3(f) nonlin 0.698 0.55 0.81 15.27 2.18* -12.55 **

13 (f) nonlin? 0.671 0.34 0.48 5.13 2.33* -3.45

9(m) nonlin? 0.479 0.44 0.49 11.64 2.28* -1.88

11 (f) nonlin? 0.472 0.21 0.20 4.72 2.18* -3.16

14 (m) linear 0.790 0.65 0.21 12.22 0.98 -0.23

4(f) linear 0.696 0.54 0.11 17.13 1.23 0.47

10 (m) linear 0.852 0.48 0.01 11.97 0.87 1.09

6(0 linear 0.920 0.74 0.32 10.84 1.90 -2.90

8(0 linear 0.661 0.44 0.18 15.27 1.72 0.66

12 (m) noise 0.477 0.12 0.19 1.66 --- 2.33

7(f) noise 0.174 0.21 0.01 0.80 --- 0.77

Figure 5: Results for empirical time series. Explanations see text.

the focus of our interest is the course of psychotic derealisation measured with
this scale. We thus restrict ourselves to statements about a specific systems
level (namely the level of psychopathological time courses of 200 to 800 days);
under these constraints we think it is possible to differentiate types of psychotic
dynamics using the nonlinear time series analysis framework presented above.

The identification of different psychotic dynamics will eventually have di­
rect clinical implications. For instance, stochastic systems whose time series
do not show serial structure point to a high sensitivity for fluctuating environ­
mental stimuli. These systems are suggested by behavioral theories which take
behavior largely under the control of external stimuli. In our study they pose a
fundamental null hypothesis since environmental influences on psychoticity are
not controlled for in our field data. Nonlinear deterministic (possibly chaotic)
dynamics on the other hand point to the existence of an internally controlled,
low-dimensional system unfolding relatively autonomously from environmen­
tal fluctuations. Moreover, empirical evidence of such dynamics would be a
validation of the dynamical disease concept for psychoses 32. In the context of
psychotherapy nonlinear deterministic systems seem compatible with psycho­
analytical or system theories.

In figure 5 the results for these data are depicted. The figure shows that in
4 (28%) patients out of 14 all 4 algorithms suggest nonlinear dynamics since we
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find a rapid decay of the forecasting accuracy (0), a higher predictive power
for nonlinear models in the DVS, and a significant rejection of the null hypoth­
esis of a linear stochastic process in both the MSD and the NVC. In another 3
patients we can tentatively conclude that their psychotic paths were generated
by a nonlinear deterministic system. There is a significant rejection of the 'lin­
ear' null hypothesis in the MSD and a steep decay in the forecasting accuracy
in the SM. Hence, we find in 7 (50%)· out of 14 patients strong evidence for
nonlinear determinism. Five time series are best modelled as an autoregressive
linear process. Two cases are classified as random. The results of significance
tests are summarised under the heading 'model' in Figure 5.

These results suggest that the framework presented in this paper is indeed
useful to differentiate several important process models and to reliably assess
nonlinear determinism in psychological time series. For further interpretations
of these results, see Tschacher et. al. 27.

4 Discussion and conclusions

Our main goal in this paper was to introduce appropriate algorithms for non­
linear time series analysis in psychology. An appropriate algorithm can deal
with short, noisy data sets and yields 'objective' results. We presented two
new approaches - nonlinear forecasting and the method of surrogate data ­
and integrated them into a framework that allows for the reliable assessment
of nonlinearity and determinism in psychological data. Application of this
framework to artificial and empirical data showed that it can differentiate be­
tween three important classes of dynamical systems: (1) random walks, (2)
linear stochastic systems, and (3) nonlinear deterministic systems. Moreover,
the presented framework satisfies constraints imposed by psychological data
since it is designed for the analysis of short and noisy time series. The ap­
proach outlined in this paper can be improved in several ways. First, it should
be complemented with stationarity tests and linear methods. In a first step,
one tests whether the time series in question is stationary and otherwise differ­
entiates it. Then one tests for temporal structure in the data. If no structure is
detected, the analysis is stopped since the data are white noise. Otherwise, the
structure is examined in more detail. It can be linear or nonlinear. Iflinearity
is detected, linear time series methodology is used to further analyse the data.
Similarly, if nonlinearity is detected, the nonlinear algorithms presented in this
paper can be used to further specify the detected nonlinearity. One can, for
instance, test for chaos. It is here where the classical techniques can be helpful.

Another possible improvement of the current framework concerns the amount
of variables that can be analysed. Most (if not all) nonlinear algorithms
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presently allow only univariate analysis of the data. In psychology, however,
one often has to use several variables to empirically investigate a given phe­
nomena. In psychotherapy research, for instance, it is obviously important to
analyze the interaction between therapeut and client. It is thus necessary to
develop multivariate algorithms. This is described in Scheier and Tschacher 33

All of the presented methods use the deterministic model (2) to analyze the
data. The assumption of a purely deterministic process may, however, not be
adequate for psychological time series. It is not very likely that all fluctuations
in a time series can be explained by chaotic dynamics. Thus, it would be useful
to improve the model (2) with respect to dynamical noise. A very interesting
first step in this direction has recently been proposed by Nychka et. al. 10.

Finally, it will be important to gain more knowledge about psychological
dynamics. Psychological research has to a large extend been tied to cross­
sectional studies and thus has little to say about psychological processes 34. In
the future a more elaborated set of process models will have to developed (e.g.
different kinds on nonlinearities dependent on the psychological system). We
hope to have stimulated such an endeavor with the present paper.
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